Some students have been generous and shared their answers to homework – after the deadline, of course. Here you can see their answers and some of my comments.

These are some of the answers to *Homework 5*. We will
share more homework answers later. If you want to share your homework’s
answers, send me an email.

Most of the students prefer that answers are published anonimously. At the end, it is easier and better that all answers are shown without disclosing the author.

<!– #
1. Write a recursive code |

# 2. Write a non-recursive
version |

# 3. Find the best-fitting line |

## 4. Find the formula |

::: q4 # It noticed that connecting amount of all rabbits and kind of two rabbits which is young and old. ::: |

—– –> ::: marginnote # Student 2 ::: |

# 1. Write a recursive code |

# 2. Write a non-recursive
version ```r fib_loop <- function(n){ young <- rep(NA, n) old<-
rep(NA, n) young[1] <- 1 old[1] <- 1 old[2] <- 1 for(i in 3:n){
young[i] <- old[i] old[i] <- old[i-1] + old[i-2] |

} return(tail(old, n=1)) } ``` |

# 3. Find the best-fitting line |

`r model <- lm(log(y) ~ n) 100*(exp(coef(model))-1)` |

# Student 3

# 1. Write a *recursive* code

```
<- function(n) {
fib_recursive if(n==0) {
<- 0
ans else {
} if(n==1) {
<- 1
ans else {
} <- fib_recursive(n-1) + fib_recursive(n -2)
ans
} return(ans)
} }
```

# 2. Write a *non-recursive* version

```
<- function(n) {
fib_loop <- rep(NA, n)
young <- rep(NA, n)
old 1] <- 1
old[2] <- 1
old[for(i in 3:n) {
<- old[i-2]
young[i] <- old[i-1] + young[i]
old[i]
}print(old[n])
}
```

# 3. Find the best-fitting line

```
library(readr)
library(ggplot2)
<- fib_recursive
y <- seq(1, 30)
index <- sapply(index, y)
line <- lm(log(line) ~ index)
model coef(model)
plot(line)
abline(a=coef(model)[1], b=coef(model)[2])
```

# 4. Find the formula

```
<- function(n) { exp(coef(model)[1] + coef(model)[2]*n) }
formula formula
```

y = exp(coef(model)[1] + coef(model)[2]*n)

y = exp(-0.7768359 + 0.4798524*n)

::: marginnote # Student 4 ::: |

# 1. Write a recursive code |

# Student 5

# 1. Write a *recursive* code

```
<- function(n) {
fib_recursive if(n == 0 | n == 1)
return(n)
else {
return(fib_recursive(n - 1) + fib_recursive(n - 2))
} }
```

# 2. Write a *non-recursive* version

```
<- function(n) {
fib_loop <- rep(NA, n)
old <- rep(NA, n)
young 1] <- 0
old[1] <- 1
young[2] <- 1
old[2] <- 0
young[if (n == 0)
return(n)
else {
for (i in 3:n) {
=old[i - 1]+old[i - 2]
old[i]=young[i - 1]+young[i - 2]
young[i]
}<- old[i] + young[i]
total
}return(total)
}fib_loop(12)
```

# 3. Find the best-fitting line

```
<- rep(NA, 30)
y for (i in 1:length(y)) {
<- fib_recursive(i)
y[i]
}<- 1:30
n plot(log(y) ~ n)
<- lm(log(y) ~ n)
model coef(model)
abline(model, col= "red")
```

# 4. Find the formula

The formula is y = coef(model)[1] + coef(model)[2].n