- Coils and rubber bands have a natural size
- If you apply a force to them, they expand
- What is the relation between the expansion and the force?
December 3, 2019
| id | rep | N | x1 | x2 | y1 | y2 | src |
|---|---|---|---|---|---|---|---|
| 1 | a | 1 | 360 | 461.0 | 478.0 | 600.0 | andres |
| 2 | a | 1 | 360 | 470.0 | 489.0 | 630.0 | andres |
| 3 | a | 1 | 350 | 461.0 | 480.0 | 620.0 | andres |
| 4 | a | 1 | 350 | 470.0 | 490.0 | 650.0 | andres |
| 5 | a | 1 | 350 | 451.0 | 470.0 | 590.0 | andres |
| 1 | b | 1 | 360 | 460.0 | 479.0 | 600.0 | andres |
| 2 | b | 1 | 360 | 470.0 | 488.0 | 630.0 | andres |
| 3 | b | 1 | 350 | 460.0 | 479.0 | 620.0 | andres |
| 4 | b | 1 | 350 | 470.0 | 489.0 | 650.0 | andres |
| 5 | b | 1 | 350 | 450.0 | 470.0 | 590.0 | andres |
| 1 | c | 1 | 360 | 460.0 | 479.0 | 600.0 | andres |
| 2 | c | 1 | 360 | 470.0 | 490.0 | 630.0 | andres |
| 3 | c | 1 | 350 | 460.0 | 479.0 | 620.0 | andres |
| 4 | c | 1 | 350 | 469.0 | 488.0 | 650.0 | andres |
| 5 | c | 1 | 350 | 450.0 | 469.0 | 590.0 | andres |
| 1 | a | 2 | 360 | 475.0 | 493.0 | 601.0 | andres |
| 2 | a | 2 | 360 | 493.0 | 512.0 | 630.0 | andres |
| 3 | a | 2 | 350 | 490.0 | 508.0 | 620.0 | andres |
| 4 | a | 2 | 350 | 502.0 | 520.0 | 650.0 | andres |
| 5 | a | 2 | 350 | 459.0 | 477.0 | 590.0 | andres |
| 1 | b | 2 | 360 | 495.0 | 492.0 | 600.0 | andres |
| 2 | b | 2 | 350 | 483.0 | 501.0 | 620.0 | andres |
| 3 | b | 2 | 330 | 463.0 | 481.0 | 600.0 | andres |
| 4 | b | 2 | 330 | 481.0 | 498.0 | 630.0 | andres |
| 5 | b | 2 | 340 | 452.0 | 472.0 | 580.0 | andres |
| 1 | c | 2 | 360 | 475.0 | 493.0 | 600.0 | andres |
| 2 | c | 2 | 350 | 483.0 | 502.0 | 620.0 | andres |
| 3 | c | 2 | 330 | 464.0 | 483.0 | 600.0 | andres |
| 4 | c | 2 | 330 | 481.0 | 500.0 | 630.0 | andres |
| 5 | c | 2 | 340 | 455.0 | 473.0 | 580.0 | andres |
| 1 | a | 1 | 40 | 125.0 | 143.0 | 225.0 | 185a34 |
| 2 | a | 1 | 50 | 155.0 | 175.0 | 280.0 | 185a34 |
| 3 | a | 1 | 40 | 195.0 | 215.0 | 375.0 | 185a34 |
| 4 | a | 1 | 10 | 192.0 | 212.0 | 400.0 | 185a34 |
| 5 | a | 1 | 110 | 258.0 | 278.0 | 435.0 | 185a34 |
| 1 | b | 1 | 40 | 125.0 | 143.0 | 225.0 | 185a34 |
| 2 | b | 1 | 50 | 156.0 | 174.0 | 280.0 | 185a34 |
| 3 | b | 1 | 40 | 156.0 | 175.0 | 375.0 | 185a34 |
| 4 | b | 1 | 10 | 238.0 | 258.0 | 400.0 | 185a34 |
| 5 | b | 1 | 110 | 261.0 | 281.0 | 435.0 | 185a34 |
| 1 | c | 1 | 40 | 125.0 | 143.0 | 225.0 | 185a34 |
| 2 | c | 1 | 50 | 155.0 | 174.0 | 280.0 | 185a34 |
| 3 | c | 1 | 40 | 196.0 | 214.0 | 375.0 | 185a34 |
| 4 | c | 1 | 10 | 193.0 | 212.0 | 400.0 | 185a34 |
| 5 | c | 1 | 110 | 260.0 | 279.0 | 435.0 | 185a34 |
| 1 | d | 1 | 40 | 124.0 | 143.0 | 225.0 | 185a34 |
| 2 | d | 1 | 50 | 156.0 | 174.0 | 280.0 | 185a34 |
| 3 | d | 1 | 40 | 195.0 | 214.0 | 375.0 | 185a34 |
| 4 | d | 1 | 10 | 193.0 | 212.0 | 400.0 | 185a34 |
| 5 | d | 1 | 110 | 261.0 | 279.0 | 425.0 | 185a34 |
| 1 | a | 2 | 40 | 130.0 | 145.0 | 225.0 | 185a34 |
| 2 | a | 2 | 50 | 167.0 | 186.0 | 280.0 | 185a34 |
| 3 | a | 2 | 40 | 234.0 | 252.0 | 375.0 | 185a34 |
| 4 | a | 2 | 10 | 242.0 | 260.0 | 400.0 | 185a34 |
| 5 | a | 2 | 110 | 299.0 | 313.0 | 435.0 | 185a34 |
| 1 | b | 2 | 40 | 128.0 | 145.0 | 225.0 | 185a34 |
| 2 | b | 2 | 50 | 167.0 | 185.0 | 280.0 | 185a34 |
| 3 | b | 2 | 40 | 235.0 | 254.0 | 375.0 | 185a34 |
| 4 | b | 2 | 10 | 243.0 | 260.0 | 400.0 | 185a34 |
| 5 | b | 2 | 110 | 299.0 | 314.0 | 435.0 | 185a34 |
| 1 | c | 2 | 40 | 130.0 | 144.0 | 225.0 | 185a34 |
| 2 | c | 2 | 50 | 168.0 | 185.0 | 280.0 | 185a34 |
| 3 | c | 2 | 40 | 235.0 | 254.0 | 375.0 | 185a34 |
| 4 | c | 2 | 10 | 242.0 | 261.0 | 400.0 | 185a34 |
| 5 | c | 2 | 110 | 298.0 | 313.0 | 435.0 | 185a34 |
| 1 | d | 2 | 40 | 130.0 | 144.0 | 225.0 | 185a34 |
| 2 | d | 2 | 50 | 167.0 | 186.0 | 280.0 | 185a34 |
| 3 | d | 2 | 40 | 235.0 | 253.0 | 375.0 | 185a34 |
| 4 | d | 2 | 10 | 243.0 | 260.0 | 400.0 | 185a34 |
| 5 | s | 2 | 110 | 298.0 | 313.0 | 435.0 | 185a34 |
| 1 | a | 1 | 171 | 180.0 | 182.0 | 188.0 | 1e4a6e |
| 2 | a | 1 | 184 | 176.0 | 181.0 | 208.0 | 1e4a6e |
| 3 | a | 1 | 188 | 195.0 | 191.0 | 212.0 | 1e4a6e |
| 5 | a | 1 | 179 | 180.0 | 177.0 | 205.0 | 1e4a6e |
| 1 | b | 2 | 191 | 195.0 | 202.0 | 199.0 | 1e4a6e |
| 2 | b | 2 | 190 | 192.0 | 189.0 | 205.0 | 1e4a6e |
| 3 | b | 2 | 191 | 194.0 | 207.0 | 214.0 | 1e4a6e |
| 4 | b | 2 | 210 | 208.0 | 210.0 | 222.0 | 1e4a6e |
| 5 | b | 2 | 220 | 217.0 | 205.0 | 206.0 | 1e4a6e |
| 1 | c | 2 | 191 | 195.0 | 202.0 | 211.0 | 1e4a6e |
| 2 | c | 2 | 190 | 192.0 | 189.0 | 202.0 | 1e4a6e |
| 3 | c | 2 | 191 | 194.0 | 207.0 | 205.0 | 1e4a6e |
| 4 | c | 2 | 210 | 208.0 | 210.0 | 212.0 | 1e4a6e |
| 5 | c | 2 | 220 | 217.0 | 205.0 | 207.0 | 1e4a6e |
| 1 | a | 2 | 40 | 15.7 | 13.0 | 11.3 | 3b2b4b |
| 2 | a | 2 | 50 | 21.3 | 15.0 | 13.7 | 3b2b4b |
| 3 | a | 2 | 60 | 25.0 | 18.8 | 16.2 | 3b2b4b |
| 4 | a | 2 | 70 | 28.8 | 21.8 | 19.4 | 3b2b4b |
| 5 | a | 2 | 80 | 32.2 | 25.2 | 22.8 | 3b2b4b |
| 1 | b | 2 | 40 | 15.7 | 12.9 | 11.4 | 3b2b4b |
| 2 | b | 2 | 50 | 20.7 | 15.7 | 13.6 | 3b2b4b |
| 3 | b | 2 | 60 | 24.8 | 18.5 | 16.6 | 3b2b4b |
| 4 | b | 2 | 70 | 28.9 | 21.7 | 19.2 | 3b2b4b |
| 5 | b | 2 | 80 | 32.1 | 25.3 | 22.6 | 3b2b4b |
| 1 | c | 2 | 40 | 15.8 | 12.9 | 11.3 | 3b2b4b |
| 2 | c | 2 | 50 | 20.5 | 15.7 | 13.8 | 3b2b4b |
| 3 | c | 2 | 60 | 24.3 | 19.3 | 16.4 | 3b2b4b |
| 4 | c | 2 | 70 | 28.7 | 21.9 | 19.4 | 3b2b4b |
| 5 | c | 2 | 80 | 32.3 | 25.3 | 22.4 | 3b2b4b |
| 1 | a | 1 | 150 | 255.0 | 275.0 | 370.0 | 6ed952 |
| 2 | a | 1 | 100 | 200.0 | 220.0 | 300.0 | 6ed952 |
| 3 | a | 1 | 200 | 290.0 | 310.0 | 396.0 | 6ed952 |
| 4 | a | 1 | 210 | 305.0 | 325.0 | 410.0 | 6ed952 |
| 5 | a | 1 | 150 | 274.0 | 293.0 | 400.0 | 6ed952 |
| 1 | b | 1 | 150 | 256.0 | 274.0 | 370.0 | 6ed952 |
| 2 | b | 1 | 100 | 192.0 | 210.0 | 300.0 | 6ed952 |
| 3 | b | 1 | 200 | 290.0 | 309.0 | 396.0 | 6ed952 |
| 4 | b | 1 | 210 | 303.0 | 321.0 | 410.0 | 6ed952 |
| 5 | b | 1 | 150 | 275.0 | 293.0 | 400.0 | 6ed952 |
| 1 | c | 1 | 150 | 256.0 | 274.0 | 370.0 | 6ed952 |
| 2 | c | 1 | 100 | 192.0 | 210.0 | 300.0 | 6ed952 |
| 3 | c | 1 | 200 | 290.0 | 309.0 | 396.0 | 6ed952 |
| 4 | c | 1 | 210 | 303.0 | 321.0 | 410.0 | 6ed952 |
| 5 | c | 1 | 150 | 275.0 | 293.0 | 400.0 | 6ed952 |
| 1 | a | 2 | 150 | 260.0 | 282.0 | 370.0 | 6ed952 |
| 2 | a | 2 | 100 | 197.0 | 217.0 | 300.0 | 6ed952 |
| 3 | a | 2 | 200 | 294.0 | 314.0 | 396.0 | 6ed952 |
| 4 | a | 2 | 210 | 307.0 | 326.0 | 410.0 | 6ed952 |
| 5 | a | 2 | 150 | 288.0 | 306.0 | 400.0 | 6ed952 |
| 1 | b | 2 | 150 | 263.0 | 282.0 | 370.0 | 6ed952 |
| 2 | b | 2 | 100 | 197.0 | 217.0 | 300.0 | 6ed952 |
| 3 | b | 2 | 200 | 294.0 | 314.0 | 396.0 | 6ed952 |
| 4 | b | 2 | 210 | 307.0 | 326.0 | 410.0 | 6ed952 |
| 5 | b | 2 | 150 | 288.0 | 306.0 | 400.0 | 6ed952 |
| 1 | c | 2 | 150 | 264.0 | 282.0 | 370.0 | 6ed952 |
| 2 | c | 2 | 100 | 197.0 | 217.0 | 300.0 | 6ed952 |
| 3 | c | 2 | 200 | 294.0 | 314.0 | 396.0 | 6ed952 |
| 4 | c | 2 | 210 | 307.0 | 326.0 | 410.0 | 6ed952 |
| 5 | c | 2 | 150 | 288.0 | 306.0 | 400.0 | 6ed952 |
| 1 | a | 1 | 250 | 346.0 | 370.0 | 475.0 | 7183bd |
| 2 | a | 1 | 250 | 365.0 | 385.0 | 495.0 | 7183bd |
| 3 | a | 1 | 250 | 378.0 | 398.0 | 515.0 | 7183bd |
| 4 | a | 1 | 250 | 365.0 | 384.0 | 495.0 | 7183bd |
| 5 | a | 1 | 250 | 359.0 | 378.0 | 475.0 | 7183bd |
| 1 | b | 1 | 250 | 349.0 | 369.0 | 475.0 | 7183bd |
| 2 | b | 1 | 250 | 350.0 | 370.0 | 495.0 | 7183bd |
| 3 | b | 1 | 250 | 365.0 | 385.0 | 515.0 | 7183bd |
| 4 | b | 1 | 250 | 357.0 | 397.0 | 495.0 | 7183bd |
| 5 | b | 1 | 250 | 349.0 | 369.0 | 475.0 | 7183bd |
| 1 | c | 1 | 250 | 348.0 | 368.0 | 475.0 | 7183bd |
| 2 | c | 1 | 250 | 356.0 | 376.0 | 495.0 | 7183bd |
| 3 | c | 1 | 250 | 364.0 | 384.0 | 515.0 | 7183bd |
| 4 | c | 1 | 250 | 356.0 | 376.0 | 495.0 | 7183bd |
| 7 | c | 1 | 250 | 350.0 | 370.0 | 475.0 | 7183bd |
| 1 | a | 2 | 250 | 365.0 | 385.0 | 475.0 | 7183bd |
| 2 | a | 2 | 250 | 381.0 | 401.0 | 495.0 | 7183bd |
| 3 | a | 2 | 250 | 399.0 | 419.0 | 515.0 | 7183bd |
| 4 | a | 2 | 250 | 397.0 | 417.0 | 495.0 | 7183bd |
| 5 | a | 2 | 250 | 366.0 | 386.0 | 475.0 | 7183bd |
| 1 | b | 2 | 250 | 364.0 | 381.0 | 475.0 | 7183bd |
| 2 | b | 2 | 250 | 376.0 | 396.0 | 495.0 | 7183bd |
| 3 | b | 2 | 250 | 393.0 | 413.0 | 515.0 | 7183bd |
| 4 | b | 2 | 250 | 378.0 | 397.0 | 495.0 | 7183bd |
| 5 | b | 2 | 250 | 360.0 | 380.0 | 475.0 | 7183bd |
| 1 | c | 2 | 250 | 366.0 | 386.0 | 475.0 | 7183bd |
| 2 | c | 2 | 250 | 382.0 | 402.0 | 495.0 | 7183bd |
| 3 | c | 2 | 250 | 392.0 | 412.0 | 515.0 | 7183bd |
| 4 | c | 2 | 250 | 381.0 | 401.0 | 495.0 | 7183bd |
| 5 | c | 2 | 250 | 365.0 | 385.0 | 475.0 | 7183bd |
| 1 | a | 1 | 355 | 356.0 | 372.0 | 416.0 | e3459b |
| 2 | a | 1 | 384 | 450.0 | 380.0 | 382.0 | e3459b |
| 3 | a | 1 | 420 | 446.0 | 740.0 | 775.0 | e3459b |
| 4 | a | 1 | 434 | 442.0 | 775.0 | 670.0 | e3459b |
| 5 | a | 1 | 425 | 460.0 | 755.0 | 759.0 | e3459b |
| 1 | b | 1 | 256 | 290.0 | 632.0 | 705.0 | e3459b |
| 2 | b | 1 | 295 | 306.0 | 630.0 | 650.0 | e3459b |
| 3 | b | 1 | 285 | 296.0 | 630.0 | 660.0 | e3459b |
| 4 | b | 1 | 260 | 280.0 | 650.0 | 680.0 | e3459b |
| 5 | b | 1 | 280 | 350.0 | 700.0 | 720.0 | e3459b |
| 1 | c | 1 | 300 | 290.0 | 725.0 | 733.0 | e3459b |
rubber$d1 <- rubber$x2-rubber$x1 rubber$d2 <- rubber$y2-rubber$y1 rubber$mid <- rubber$y1-rubber$x2
| id | rep | N | x1 | x2 | y1 | y2 | src | d1 | d2 | mid |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | a | 1 | 360 | 461 | 478 | 600 | andres | 101 | 122 | 17 |
| 2 | a | 1 | 360 | 470 | 489 | 630 | andres | 110 | 141 | 19 |
| 3 | a | 1 | 350 | 461 | 480 | 620 | andres | 111 | 140 | 19 |
| 4 | a | 1 | 350 | 470 | 490 | 650 | andres | 120 | 160 | 20 |
| 5 | a | 1 | 350 | 451 | 470 | 590 | andres | 101 | 120 | 19 |
| 1 | b | 1 | 360 | 460 | 479 | 600 | andres | 100 | 121 | 19 |
src=="185a34" & N==2)When data seems to be in a straight line, we can find that line using a linear model
model <- lm(d2 ~ d1, data=rubber,
subset=(src=="185a34" & N==1))
model
Call:
lm(formula = d2 ~ d1, data = rubber, subset = (src == "185a34" &
N == 1))
Coefficients:
(Intercept) d1
35.4505 0.7514
Remember that straight lines can be represented by the formula \[\text{d_2}=A+B\cdot \text{d_1}\] The coefficient \(A\) is the value where the line intercepts the vertical axis
The coefficient \(B\) is how much length goes up when n_marbles increases. This is called slope
In our case \(A\) and \(B\) are
(Intercept) d1 35.4504763 0.7513757
Robert Hooke (1635–1703) was an English natural philosopher, architect and polymath.
In 1660, Hooke discovered the law of elasticity which describes the linear variation of tension with extension
“The extension is proportional to the force”
Natural philosophy was the study of nature and the physical universe that was dominant before the development of modern science
Polymath (from Greek “having learned much”) is a person whose expertise spans a significant number of different subject areas
Biologist. Hooke used the microscope and was the fists to use the term cell for describing biological organisms.
The essence of the coil is:
